INDETITAS TRIGONOMETRIA

Rumus Identitas Trigonometri

A. PENGERTIAN
Identitas trigonometri adalah suatu relasi atau kalimat terbuka yang memuat fungsi-fungsi trigonometri dan yang bernilai benar untuk setiap penggantian variabel dengan konstanta anggota domain fungsinya. Domainnya sering tidak dinyatakan secara eksplisit. Jika demikian maka umumnya yang dimaksud adalah himpunan bilangan real. Namun dalam trigonometri identitas yang memuat fungsi tangens, kotangens, sekans dan kosekans domain himpunan bilangan real ini sering menimbulkan masalah ketakhinggaan. Karena itu maka dalam hal tersebut, meskipun tidak dinyatakan secara eksplisit, maka syarat terjadinya fungsi tersebut merupakan starat yang perlu diperhitungkan.

RUMUS-RUMUS TRIGONOMETRI

I.  RELASI/RUMUS DASAR FUNGSI TRIGONOMETRI
1. RELASI KEBALIKAN RELASI PEMBAGIAN  RELASI “PYTHAGORAS”
2. FUNGSI TRIGONOMETRI SUDUT-SUDUT YANG BERELASI

Kofungsi:          sin(90 – a) = cos a              cos(90 – a) = sin a

                          Tan(90 – a) = cot a              cot(90 – a) = tan a



                          Sec(90 – a) = csc a              csc(90 – a) = sec a

sin(180 – a)o = sin ao                            sin(180 + a)o = -sin ao

cos(180 – a)o = -cos ao                         cos(180 + a)o = -cos ao

tan(180 – a)o = -tan ao                         tan(180 – a)o = tan ao

sin(360 – a)o = -sin ao                          sin(-ao) = -sin ao

cos(360 – a)o = cos ao                          cos(-ao) = cos ao

tan(360 – a)o = -tan ao                         tan(-ao) = -tan ao

II. RUMUS FUNGSI TRIGONOMETRI DUA SUDUT

1. RUMUS JUMLAH  DAN RUMUS SELISIH
sin(a + b) = sin a cos b + cos a sin b
sin(a – b) = sin a cos b – cos a sin b
cos(a + b) = cos a cos b – sin a sin b
cos(a – b) = cos a cos b + sin a sin b

2. RUMUS SUDUT RANGKAP
sin 2a = 2 sin a cos b
cos 2a = cos2a – sin2a
            = 1 – 2 sin2a        
            = 2 cos2a – 1

III. RUMUS JUMLAH, SELISIH, DAN HASIL KALI FUNGSI SINUS/KOSINUS

1. HASIL KALI SINUS DAN KOSINUS             2. JUMLAH DAN SELIEIH SUDUT
sin a cos b = 1/2(sin(a + b) + sin(a – b))               sin A + sin B = 2 sin 1/2(A + B) cos 1/2(A + B)
cos a sin b = 1/2(sin(a – b) – sin(a – b))                sin A – sin B = 2 cos1/2(A – B) sin1/2 (A – B)
cos a cos b = 1/2(cos(a – b) – cos(a – b))             cos A + cos B = 2 cos 1/2(A + B) cos 1/2(A – B)
sin a sin b = -1/2(cos(a – b) – sin(a – b))              cos A – cos B = -2 sin 1/2(A – B) sin 1/2(A – B)

CONTOH SOAL IDENTITAS TRIGONOMETRI:

1. SOAL-SOAL BERDASAR RELASI/RUMUS DASAR FUNGSI TRIGONOMETRI

Contoh 1:
(Pembuktian dilakukan dengan mengubah bentuk ruas kanan untuk disederhanakan ke bentuk ruas kiri. Pilihan ini menuju ruas kiri ini terutama karena bentuk ruas kiri lebih sederhana).
Buktikanlah bahwa sec4q – sec2q = tan4q + tan2q

Bukti:
Alternatif I Dari ruas kiri                                  Alternatif II Dari ruas kanan
Ruas kiri:                                                          Ruas kanan:
sec4q – sec2q                                                     tan4q + tan2q
= sec2q(sec2q – 1)                                             = tan2q(tan2q – 1)
= sec2q x tan2q                                                  = (sec2q – 1) sec2q
= (1 + tan2q) x tan2q                                         = = sec4q – sec2q
= tan2q + tan4q                                                  = ruas kiri (terbukti)
= tan4q – tan2q
= ruas kanan (terbukti)

Postingan populer dari blog ini

Barisan dan deret